Analysis of a Scalable Preconditioner for the Wigner-poisson Equation
نویسندگان
چکیده
We analyze a preconditioner for the time-independent Wigner-Poisson equations for a resonant tunneling diode and present a numerical example of a continuation study which supports the theory. The application of the preconditioner transforms the equations into a compact fixed point problem for the Wigner distribution. After discretization, the Jacobians of the discrete problem have mesh-independent eigenvalue clustering properties, which implies the mathematical scalability of the nonlinear solver.
منابع مشابه
A Scalable Auxiliary Space Preconditioner for High-order Finite Element Methods
In this paper, we revisit an auxiliary space preconditioning method proposed by Xu [Computing 56, 1996], in which low-order finite element spaces are employed as auxiliary spaces for solving linear algebraic systems arising from high-order finite element discretizations. We provide a new convergence rate estimate and parallel implementation of the proposed algorithm. We show that this method is...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملOperator Splitting Methods for the Wigner-poisson Equation
1. I n t r o d u c t i o n . In this paper we shall discuss operator splitting methods to discretize the linear Wigner equation and the coupled Wigner-Poisson system. The Wigner formalism, which represents a phase-space description of quantum mechanics, has in recent years a t t racted considerable at tent ion of solid s tate physicists for including quantum effects in the simulation of ul tra-...
متن کاملAsymptotic Behavior to the 3-d Schrödinger/hartree Poisson and Wigner Poisson Systems
Using an appropriate scaling group for the 3-D Schrödinger–Poisson equation and the equivalence between the Schrödinger formalism and the Wigner representation of quantum mechanics it is proved that, when time goes to infinity, the limit of the rescaled self-consistent potential can be identified as the Coulomb potential. As a consequence, Schrödinger–Poisson and Wigner–Poisson systems are asym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007